
International Journal of Advances in Engineering Research                                     http://www.ijaer.com  

 

(IJAER) 2019, Vol. No. 18, Issue No. VI, December                         e-ISSN: 2231-5152, p-ISSN: 2454-1796  
 

30 

 

INTERNATIONAL JOURNAL OF ADVANCES IN ENGINEERING RESEARCH 

DESIGN & ANALYSIS OF AN AREA-EFFICIENT BINARY 

MULTIPLIER ARCHITECTURE 

 

* Bobby Nelson, ** Dr Viswanath H L 

* PhD Scholar, ** Professor: Dept of ECE, 

CHRIST (Deemed to be University), Faculty of Engineering 

Kengeri, Bangalore, India 

 

ABSTRACT 

The paper entails the design of an extremely area-efficient binary multiplier chiefly for use in Application 

Specific Integrated Circuits (ASICs) and embedded systems that rely on minimalistic area-constraints and 

expenses at the cost of speed. The design of the multiplier core has been based on the Urdhva-Tiryagbhyam (UT) 

theorem, an ancient simplification technique as described in the Vedic Scripts, for a simplified architecture. The 

process of multiplication has also been further improved using the Karatsuba algorithm to reduce the overall 

delay of the design. The final implementation has then been carried out using Gate-Diffusion-Input (GDI) based 

cells for further improvements in the area-constraints. 

 

Keywords: Binary Multiplier, Gate-Diffusion-Input, Karatsuba Algorithm, Urdhva-Tiryagbhyam Theorem. 

 

INTRODUCTION 

Multiplication happens to be one of the most elaborate digital processes and offers a good scope for 

improvement in terms of area, delay as well as power efficiency. The multiplier data-path has extremely 

complex architecture among all the other arithmetic components and is usually simplified for a fast 

response in general processors because speed is the most crucial aspect of digital integrated circuit 

designing in general computing applications. However, for the more specific utilities as in the case of 

Application Specific Integrated Circuits (ASICs), the crux of the design, primarily happens to be the 

chip area as it is directly proportional to the manufacturing costs of the IC. The ASICs tend to have a 

minimal architecture because cost-efficiency is the key to their design. However, the conventional 

hierarchical array multiplication [11], being a simple looped method in which a multiplicand is 

repetitively multiplied with the individual bits of second multiplicand and the partial product terms are 

then finally added to yield the product, requires extensive area for its realization and surpasses the 

expenditure budget of the overall design by heavy margins. 

 

The scope of the paper is to design a highly area-efficient binary multiplier, which is well suited to 

the ASIC design constraints, using the combined benefits of the Karatsuba algorithm and the Urdhva-

Tiryagbhyam (UT) theorem [9], with the implementation being carried out in Gate-Diffusion-Input 

(GDI) based cells. 



International Journal of Advances in Engineering Research                                     http://www.ijaer.com  

 

(IJAER) 2019, Vol. No. 18, Issue No. VI, December                         e-ISSN: 2231-5152, p-ISSN: 2454-1796  
 

31 

 

INTERNATIONAL JOURNAL OF ADVANCES IN ENGINEERING RESEARCH 

METHODOLOGY 

The UT theorem has been used in the design of the core multiplier to reduce the complications in the 

design and to resolve critical adder delays. The Karatsuba algorithm is effectively used to minimize the 

area-constraints as well as the delay. The implementation of the design in GDI based cells serves to 

reduce the area-constraints furthermore. The design methodology has been elaborately described below 

with respect to each of these aspects. 

 

A. UT Theorem 

The term Urdhva-Tiryagbhyam literally translates to “Vertically and Crosswise” from Sanskrit. The 

UT theorem [4], [14], as defined in the ancient Vedic Sutras, is a tool used for the simplification of the 

multiplication process. Traditionally, it applies to the decimal number system. However, we apply the 

same ideas to the binary number system to make the proposed algorithm compatible with the digital 

hardware. The process of multiplication is broken down into two stages, the first stage being the 

generation of partial products of varying bit-widths and the second being their addition to yield the final 

product. The process can be summed up into following expressions mathematically wherein A and B 

represent the 9-bit multiplicands and terms D-T represent the partial products. The Table 1, represents 

the addition process for the partial products to yield the final product ‘X18-bits’. 

D = A0B0 

E = A0B1+A1B0 

F = A0B2+A1B1+A2B0 

G = A0B3+A1B2+A2B1+A3B0 

H = A0B4+A1B3+A2B2+A3B1+A4B0 

I = A0B5+A1B4+A2B3+A3B2+A4B1+A5B0 

J = A0B6+A1B5+A2B4+A3B3+A4B2+A5B1+A6B0 

K = A0B7+A1B6+A2B5+A3B4+A4B3+A5B2+A6B1+A7B0 

L = A0B8+A1B7+A2B6+A3B5+A4B4+A5B3+A6B2+A7B1+A8B0 

M = A1B8+A2B7+A3B6+A4B5+A5B4+A6B3+A7B2+A8B1 

N = A2B8+A3B7+A4B6+A5B5+A6B4+A7B3+A8B2 

O = A3B8+A4B7+A5B6+A6B5+A7B4+A8B3 

P = A4B8+A5B7+A6B6+A7B5+A8B4 

Q = A5B8+A6B7+A7B6+A8B5 

R = A6B8+A7B7+A8B6 

S = A7B8+A8B7 

T = A8B8 

 

B. Karatsuba Algorithm 

The Karatsuba algorithm [12], [13], is a fast multiplication algorithm, developed by Anatoly 

Karatsuba in 1960, published in 1962 [2]. The algorithm can effectively reduce the multiplication of two 

n-digit numbers to at most Nlog
2
3 (N1.59) single-digit multiplications. It is therefore faster than the classical 

algorithm, which requires N2 single-digit products.  



International Journal of Advances in Engineering Research                                     http://www.ijaer.com  

 

(IJAER) 2019, Vol. No. 18, Issue No. VI, December                         e-ISSN: 2231-5152, p-ISSN: 2454-1796  
 

32 

 

INTERNATIONAL JOURNAL OF ADVANCES IN ENGINEERING RESEARCH 

For example, it requires 310 = 59,049 single-digit multiplications, using the Karatsuba algorithm, to 

multiply two 1024-digit numbers (n = 1024 = 210), whereas the classical algorithm requires (210)2 = 

1,048,576 multiplications.  

 

Considering two 16-bit wide binary variables, A and B, the numbers are broken down as follows into 

their two significant halves: 

A = AH * 28 + AL 

B = BH * 28 + BL 

 

Hence, 

AB = (AH * 28 + AL)*(BH * 28 + BL) 

The above expression shows the multiplication of the two binary numerals and when expanded they 

yield four multiplication terms represented as: 

X = AHBH 

Y = AHBL +AL BH 

Z = ALBL 

AB = X*216 + Y*28 + Z 

 

So, the long multiplication technique here requires a total of four 8-bit multipliers, with Y itself 

requiring two. However, going by the Karatsuba approach, the multiplication terms shall be reduced as: 

V = (AH+AL)*(BH +BL) - X - Z = Y 

 

Here, V represents an alternate term which does not require just one multiplier and is numerically 

equivalent to Y. Hence, the expression shall be, 

AB = X*216 + V*28 + Z 

 

The above expression depicts the numerical representation of the Karatsuba algorithm involving the 

calculation of three multiplicands as opposed to the four required as in the case of classical approach.  

However, the caveat associated with this algorithm is that the term V might not necessarily have the 

same multiplication bit-width as X and Z. The addition of two 8-bit numbers may yield a 9-bit result at 

max. Hence, the UT multiplier core needs to have a bit-width of 9-bits. 

 

C. GDI Cells 

The GDI design technique [1], [5], was introduced as a promising alternate approach of implementing 

logical functions minimally in two transistors. GDI methodology allows the implementation of a wide 

range of complex logic functions using merely two transistors. 



International Journal of Advances in Engineering Research                                     http://www.ijaer.com  

 

(IJAER) 2019, Vol. No. 18, Issue No. VI, December                         e-ISSN: 2231-5152, p-ISSN: 2454-1796  
 

33 

 

INTERNATIONAL JOURNAL OF ADVANCES IN ENGINEERING RESEARCH 

                
(a)                                              (b) 

Fig. 1. (a) Basic GDI cell (b) Improved GDI-based cell 

 

Fig. 1. (a), shows the basic construction of a GDI cell and the improved GDI-based cell has been 

shown in Fig. 1. (b). The cells have been designed with a Wp/Wn ratio of 3. The basic GDI cells suffer 

from excessive partial swing problems which renders them futile for use in any cascaded connections. 

The improved GDI-based cell shown in Fig. 1. (b) reduces the swing problems to some extent however 

the actual implementation of the sub-circuits still requires a few necessary adjustments as shown in the 

implementation section. 

 

TABLE II 

FUNCTION IMPLEMENTATION IN GDI CELLS 

N P G D FUNCTION 

B 0 A A.B AND 

0 1 A A’ INVERTER 

C B A A’B+AC MUX 

1 B A A+B OR 

B B’ A AB+A’B’ XNOR 

B’ B A A’B+AB’ XOR 

 

IMPLEMENTATION 

The GDI-based cells [7] are used in the design of the sub-circuit blocks for the proposed multiplier. 

The cells are all optimized for a full output swing at the cost of a slight increase in the MOSFET-count. 

The MOSFETs have a uniform dimensional specification all through the design as shown in the Fig. 1. 

The design of these basic logic gates is shown in Fig. 2. The AND & OR gates need an extra MOSFET 

to compensate for the partial swing while the XOR & XNOR [7], [8], gates require two each for the 

same purpose. The gates are also used with inverter stages in the middle that act as buffers. 



International Journal of Advances in Engineering Research                                     http://www.ijaer.com  

 

(IJAER) 2019, Vol. No. 18, Issue No. VI, December                         e-ISSN: 2231-5152, p-ISSN: 2454-1796  
 

34 

 

INTERNATIONAL JOURNAL OF ADVANCES IN ENGINEERING RESEARCH 

   

 
                     (a)                                         (b)                                                 (c)                                                    (d) 

Fig. 2. Sub-circuits for the basic logic gates 

 

The Fig. 3. (a), depicts the sub-circuit of a 2:1 Multiplexer with a full-swing output. The multiplexer. 

in the design, serves an important purpose of separating the input multiplicands to be fed into the single 

9-bit UT multiplier as per the Eq. (2). The Fig. 3. (b), depicts a sub-circuit for a positive latch [15] based 

on the Multiplexer logic. The latch is integral in the proposed design as it serves the purpose of using 

the combinatorial multiplier core, sequentially by storing the individual products of the two significant 

halves as seen in the Eq. (2) after each iteration. 

           
                                                                     (a)                                                           (b) 

Fig. 3. (a) 2:1 Multiplexer (b) Latch 

 

The other crucial sub-circuits under consideration are the extensively used adders and subtractors in 

the design. From the design of the 9-bit UT Multiplier core to the ripple-carry-adders and subtractors in 

the overall design, these constitute an integral component in the design of the proposed multiplier and 

their extensive usage requires them to be as area-efficient as possible. The design of the half-adders and 

half-subtractors has been carried out rather simplistically using mere XOR & AND sub-circuits which 

amount to 9 MOSFETs each. However, the design of the full-adder [6], and the full-subtractor sub-



International Journal of Advances in Engineering Research                                     http://www.ijaer.com  

 

(IJAER) 2019, Vol. No. 18, Issue No. VI, December                         e-ISSN: 2231-5152, p-ISSN: 2454-1796  
 

35 

 

INTERNATIONAL JOURNAL OF ADVANCES IN ENGINEERING RESEARCH 

circuits has been carried out more minimally as shown in the Fig. 4. The XOR and XNOR sub-circuits 

do require an input inverter each. 

 

           
(a)                                                                    (b) 

Fig. 4. (a) Full-adder (b)Full-subtractor 

 

The Fig. 5 presents the design of the 9-bit UT multiplier core. As the name implies, the multiplier is 

based on the UT theorem discussed earlier and works in two stages, namely the generation of partial 

products from Eq. (1) and their additions as per the Table 1. The 9-bit multiplier has a dual purpose of 

multiplying 8-bit as well as 9-bit multiplicands. The first two stages involve the multiplication of the 

most and the least significant 8-bits. The 9th bit in these stages is simply grounded off via the MUXs. 

The third stage utilizes the full 9-bit capability of the UT multiplier for the additive multiplicands. 

 

 

Fig. 5. 9-bit UT Multiplier 

 

 The final proposed multiplier design is shown in the Fig. 6. It utilizes the Karatsuba algorithm 

and is implemented using all the sub-circuits discussed so far. The final multiplier output is obtained 

with the realization of Eq. (2), through the Adders & Subtractors block as ‘P32-bits’. The first control 

signal ‘S2’ is a 2-bit selection line signal for the MUX to differentiate among the various stages of 

multiplication. The second control signal ‘W2’ is a 2-bit word-line signal for enabling and disabling the 

latches used for storing the multiplication results ‘X’ and ‘Z’ as in the Eq. (2). The generation of these 

control signals may add as an overhead to the clock unit of the system. The clock scheme used for the 

control signals has been shown in Fig. 7. 



International Journal of Advances in Engineering Research                                     http://www.ijaer.com  

 

(IJAER) 2019, Vol. No. 18, Issue No. VI, December                         e-ISSN: 2231-5152, p-ISSN: 2454-1796  
 

36 

 

INTERNATIONAL JOURNAL OF ADVANCES IN ENGINEERING RESEARCH 

 

Fig. 6. The proposed 16-bit multiplier 

 

 

Fig. 7. Clock scheme for the proposed multiplier’s control signals 

RESULTS & ANALYSIS 

The proposed multiplier has been designed and simulated at 90nm technology with input voltages of 

1.5 V, and with the uniform dimensional specifications from Fig. 1. The Table 3. presents the analysis 

of the various designed circuits. The worst-case delay and the average power consumption for each 

circuit have been listed in the table. The area has been represented by the MOSFET count of each circuit 

however, the input inverters have not been considered for the logic gates.  

TABLE III 
ANALYSIS OF DESIGNED CIRCUITS 

Circuits MOSFETs Delay, ns Power, µW 

INVERTER 2 0.0299 2.473 

AND 3 0.0076 0.152 

OR 3 0.2256 0.501 

MUX 4 0.0375 0.003 

XNOR 4 0.0440 0.033 

XOR 4 0.0440 0.161 

LATCH 10 0.0572 34.90 

Half-Adder 12 0.1542 11.44 

Half-Subtractor 12 0.1044 15.54 

Full-Adder 20 0.2765 19.43 

Full-Subtractor 20 0.2768 21.06 

UT Multiplier 1842 4.2485 1514 

Proposed Multiplier 3747 15.004 5376 



International Journal of Advances in Engineering Research                                     http://www.ijaer.com  

 

(IJAER) 2019, Vol. No. 18, Issue No. VI, December                         e-ISSN: 2231-5152, p-ISSN: 2454-1796  
 

37 

 

INTERNATIONAL JOURNAL OF ADVANCES IN ENGINEERING RESEARCH 

The circuits have been arranged in the order of their MOSFET count. The worst-case delay and 

power-dissipation for the multipliers have been calculated using several pseudorandom input sequences. 

The Fig. 8. shows the simulation results of the proposed multiplier architecture for an input combination 

of all 1’s. The traces at the high-state, i.e., at 1.5 V, have been highlighted in black. 

 

 

Fig. 8. Simulation of proposed multiplier for an all 1’s input combination 

 

The Table. 4 presents a comparative analysis of a few multiplier architectures with the proposed 

multiplier in terms of the area or the MOSFET count. The reduction in the area has been evident by a 

noticeably large margin and hence the proposed design makes up for an area-efficient alternate for the 

ASICs and for other circuits requiring an extremely compact multiplier design. 

 

TABLE IV 

COMPARISON BETWEEN MULTIPLIER ARCHITECTURES 

Multiplier MOSFETs 

CMOS Array Multiplier [11] 16032 

CMOS UT Multiplier [3] 12864 

Booth-Wallace Tree Multiplier [10] 7858 

Proposed Multiplier 3747 

CONCLUSION 

A new highly area-efficient design for a compact 16-bit multiplier has been proposed and explained 

in detail. It has been effectively established in Table. 4., that the proposed multiplier uses the lowest chip 

area in terms of the MOSFET count as compared with the other multiplier architectures and is therefore 

favorable for use in ASICs. The proposed design, implemented in the 90nm technology using GDI-

based cells, has been found to yield conducive results in all the tests carried out upon it. 

 



International Journal of Advances in Engineering Research                                     http://www.ijaer.com  

 

(IJAER) 2019, Vol. No. 18, Issue No. VI, December                         e-ISSN: 2231-5152, p-ISSN: 2454-1796  
 

38 

 

INTERNATIONAL JOURNAL OF ADVANCES IN ENGINEERING RESEARCH 

REFERENCES 

[1] A. Morgenshtein, A. Fish, and I. Wagner, “Gate-diffusion-input (GDI): a power-efficient method 

for digital combinatorial circuits,” IEEE Trans. on VLSI Syst., Vol. 10, No. 5, pp. 566-581, October 

2002. 

[2] A. Karatsuba, and Y. Ofman, “Multiplication of multidigit numbers on automata,” Soviet Physics – 

Doklady, Vol. 7, No.7, pp. 595-596, January 1963. 

[3] A. Somani, D. Jain, S. Jaiswal, K. Verma, and S. Kasht, “Compare vedic multipliers with 

conventional hierarchical array of array multiplier,” International J. of Computer Tech. and 

Electronics Engg., Vol. 2, No. 6, pp. 52-55, December 2012. 

[4] A. Kareem, M. Vardhana, and P. Kumar, “VLSI implementation of high-speed-low-power-area-

efficient multiplier using modified vedic mathematical techniques”, Recent Patents on Computer 

Science, Vol. 9, No. 3, pp. 216-221, January 2017. 

[5] S. Kaur, B. Singh, and D.K. Jain, “Design and performance analysis of various adders and 

multipliers using GDI technique,” International J. of VLSI Design & Comm. Syst., Vol. 6, No. 5, 

pp. 45-56, October 2015. 

[6] A. Shams, and M. Bayoumi, “A novel high-performance CMOS 1-bit full-adder cell,” IEEE Trans. 

on Circuits and Syst. II: Analog and Digital Signal Processing, Vol. 47, No. 5, pp. 478-481, May 

2000. 

[7] S. Mohan, and N. Rangaswamy, “GDI based full adders for energy efficient arithmetic 

applications”, Engg. Sci. and Tech., an International J., Vol. 19, pp. 485-496, 2016. 

[8] J.M. Wang, S.C. Fang, and W.S. Feng, “New effective designs for XOR and XNOR functions on 

the transistor level,” IEEE J. of Solid-State Circuits, Vol. 29, No. 7, pp. 780-786, July 1994. 

[9] S. Arish, and R.K. Sharma, “An efficient binary multiplier design for high speed applications using 

karatsuba algorithm and urdhva-tiryagbhyam algorithm” in Proc. GCCT, Thuckalay, India, 2015, 

pp. 192-196. 

[10] F. Jalil, “M*N booth encoded multiplier generator using optimized wallace trees,” IEEE Trans. on 

VLSI Syst., Vol. 1, No. 2, pp. 120-125, June 1993. 

[11] A. Asati, and Chandrashekhar, “A high-speed, hierarchical 16x16 array multiplier design,” in Proc. 

IMPACT ’09, Aligarh, India, 2009 pp. 161-164. 

[12] R.P. Brent, and P. Zimmermann, “Integer Arithmetic,” in Modern computer arithmetic, Cambridge, 

Cambridge University Press, 2010, pp. 3-14. 

[13] K.O. Geddes, S.R. Czapor, and G. Labahn, “Arithmetic of Polynomials, Rational Functions, and 

Power Series,” Algorithms for computer algebra, Springer, 2014, pp. 118-119. 

[14] A. Nicholas, K. Williams, and J. Pickles, “Vertically and Crosswise”, Castle Douglas, Scotland UK: 

Inspiration Books, 2010. 

[15] J.M. Rabaey, A.P. Chandrakasan, and B. Nikolic, “Designing Sequential Logic Circuits,” in Digital 

Integrated Circuits – A design perspective, 2nd ed., India, Pearson Education, 2003, pp. 280-283. 


